期刊介绍
期刊导读
- 12/13影像科学与光化学期刊影响因子查询(影像学与
- 12/09影像科学与光化学论文查重软件(论文检测论文
- 12/07如果让你穿越到古代去做一件事
- 10/18“太阳燃料”更近了!我国科学家揭秘太阳光催化
- 04/22哈尔滨工业大学取得一项重要科研突破
如果让你穿越到古代去做一件事(4)
由于人工智能技术最早被应用于互联网产业之中,所以在医疗人工智能产品的开发中,除了传统的医疗器械开发人员之外,也引入了很多具有互联网产品开发背景的人员。
互联网产品的开发讲求快速迭代,不断更新,根据用户的使用情况,及时反馈和修正,以实现最好的用户体验。很多互联网产品的功能迭代是以月、周甚至天为周期的,而传统的医疗软件的更新频率通常是以年为单位。之所以医疗软件更新的周期长,是因为整个研发过程需要进行严格的质量控制,以保证最终输出的产品不会在临床使用过程中发生意外或产生风险,而且医疗产品的每一次迭代都会产生巨大的研发成本。与很多互联网产品选择先上线供客户试用,再不断修正错误的过程不同,对于直接关系到人体生命健康的产品,医生也不敢在有潜在风险的情况下,贸然尝试将该产品在临床使用。
因此,对于刚刚进入医疗行业的公司来讲,建议加强企业对医疗器械质量文化的研究和实践,认真分析并理解“互联网思维”和“医疗器械质量文化”的差异,在发挥自己优势的同时,也要提升自己在医疗器械领域的研发水平。当然,互联网公司所擅长的敏捷开发,也是医疗器械公司所追求的,但这非照搬“盲目提出功能需求、先开发后修改”的模式。
一个经济且高效的开发,应当是在最初进行产品整体设计之时,对技术可行性、用户需求、市场规模等多个方面进行充分的调研,确定产品的适用范围和最终功能形态之后,通过敏捷开发的形式,不断向着最终的目标前进,快速解决研发过程中遇到的各种问题。在保证产品质量的同时,尽快推进产品的研发上市进度。
严格数据质量控制
与生产其他的人工智能产品不同,生产一款医疗器械产品,要同时关注安全、有效这两个方面,国家相关部门对于产品的审批,也主要考察这两个方面。
国家药监局医疗器械技术审评中心发布的《深度学习辅助决策医疗器械软件审评要点》(以下简称《审评要点》)中提到:“从发展驱动要素角度讲,深度学习实为基于海量数据和高算力的黑盒算法。本审评要点重点关注软件的数据质量控制、算法泛化能力、临床使用风险,临床使用风险应当考虑数据质量控制、算法泛化能力的直接影响,以及算力所用计算资源(即运行环境)失效的间接影响。”可见数据质量控制在新一代人工智能医疗产品的开发中发挥着重要作用。
在新一代人工智能医疗软件的开发中,数据扮演着生产原材料的角色,因此对于生产原材料的质量需要严格把关。《审评要点》中提到:“数据收集应当考虑数据来源的合规性和多样性、目标疾病流行病学特征、数据质量控制要求。数据来源应当在合规性基础上保证数据多样性,以提高算法泛化能力,如尽可能来自多家、不同地域、不同层级的代表性临床机构,尽可能来自多种、不同采集参数的采集设备。”也就是说在获得数据的时候,既要考虑到数据的来源,也需要完整记录数据相关的信息。
研发人员要根据产品功能定义的内容,来确定该产品所需数据的完整性应包含的具体内容。而产品功能的定义要参照目前公认的临床指南、专家共识、检查规范等业界规范标准进行设定。
在功能设计的时候,要保证功能的实现符合目前临床的常规操作流程。例如:一款医疗器械软件的功能定义为确定病灶位置,而病灶位置以及外观属性是可以通过影像数据准确判断的,医生在临床诊断时,无需其他辅助信息单纯获取影像数据即可。如果该软件功能定义为判断病灶良恶性,而临床上良恶性是通过病理结果确定的,则完整的数据至少应包括影像+病理报告。同时,如果是分类问题,每一类的数据量应当符合相应算法的最低要求。
预实验确保标注质量
数据标注是人类借助计算机等工具,对各种类型的数据包括文本、图片、语音、视频等,完成分类、画框、注释、标记并打上说明其某种属性的标签的工作。整个加工过程都应该在严格的质控下进行。除了在招募医生时应有较高的招募标准外,在招募完成后,还要对医生重新进行标注能力的评估和考核。
建议由医学专家组对参与考核的医生进行标注规范培训,之后由医学专家组统一制作一批具有正确答案的标注数据作为考试库数据。在筛选医生时,根据病种类型选择相应比例的考试题,测试应保证覆盖产品功能中要分辨的每一类病例。
在医生资质测试考核中,不仅要检测医生对病例判读的准确性,还要考察该医生两次诊断的一致性。标注关注的重点是一致性,也就是说同一病例由不同标注者或同一标注者进行两次观测,其结果在误差允许范围内是一致的。评价一致性程度的方法很多,比如说Kappa值、Kendal l一致性系数、组内相关系数(ICC)等。对于不同的数据类型和标注,需要选择合适的评价。
文章来源:《影像科学与光化学》 网址: http://www.yxkxyghxgw.cn/zonghexinwen/2022/1207/623.html